Improving PDG Vector Creation for AnDarwin

Julia Matsieva @ ECS 235A e Fall 2012
UC Davis

Abstract

The Android application market allows developers to create original
and innovative applications using the Android platform; however,
malicious developers may try to profit off advertising revenue by
stealing code from existing applications. Others may release cloned

applications in order to increase their chances of being downloaded.

In order to assess and monitor the health of the Android market, the
AnDarwin project aims to detect these duplicate applications in a
scalable way. This is done by constructing dependence graphs of
Android applications, converting them into vectors and identifying
similar vectors via efficient clustering methods. Here, we suggest
and evaluate several proposals to improve the creation of PDG
vectors that retain more information about graph structure, helping
distinguish applications that are falsely marked as clones using the
current approach.

1. Background

The popularity of smart phones has jumped significantly in the past
few years and a large component of the Android experience is the
third-party marketplaces, where developers can create their own
applications and original content for use on the Android platform.
However, due to the infrastructure in place for profiting off these
application, there is some incentive for malicious developers to steal
existing apps and pass them off as their own in order to steal ad
revenue. Similarly, some developers will often release duplicates
of the same application in order to get the attention of users. These
practices potentially clutter the market and make it difficult for
honest developers to create and market their high-quality product.
Thus, the AnDarwin project is motivated by the desire to identify
spam or plagiarism that hurt the Android market ecosystem.

The goal of AnDarwin is to identify applications that share a
significant amount of code without relying on metadata, thereby
enabling it to identify both cloned and plagiarized applications. To
accomplish this, AnDarwin relies on program dependence graphs
which are constructed from the DEX code of each method of
an Android application as follows: each statement s in the code
becomes a node in the graph and there is an edge (s, t) between
every pair of statements s and ¢ if ¢ contains a variable whose
value depends on s. Thus, the edges represent data dependencies
rather than control flow dependencies. Each graph is then converted
to a set of semantic vectors, with each vector corresponding to
a connected component of the graph. The d-dimensional vector
v is constructed by setting the value of v;, the " component of
the vector, to be the number of nodes of type ¢ that appear in the
connected component, where d is the number of statement types.
For example, if a connected component contains two conditional
branches and they have type ¢ = 9, then the value of vg will be
2. These resulting sets of vectors are then clustered using Locality
Sensitive Hashing, which efficiently identifies vectors that are close
together in Euclidean space.

This approach allows AnDarwin to achieve major advantages
in scalability and efficiency. In order to accurately compare two
Android programs, it would be necessary to detect whether two
PDG’s have the same structure; however, this would require solving
the maximum common subgraph isomorphism problem, which is
known to be NP-hard. Thus, AnDarwin simplifies the task by
performing the vector conversion step and comparing the resulting
vectors instead. Similarly, AnDarwin leverages the LSH algorithm
in order to avoid pairwise comparisons between vectors, which
would be quadratic in the number of vectors and thus prohibitive for
analyzing libraries of over 300,000 Android applications. [1]

2. Problem

As shown in the previous section, AnDarwin makes impressive gains
in efficiency and scalability by performing the conversion between
PDG and semantic vectors. However, from the construction given,
we can see that the conversion from a PDG to its corresponding
set of vectors does not retain any edge information — important
existing knowledge that could potentially increase the accuracy of
vector comparison. Furthermore, the authors of [1] state that

To improve the scalability of this approach further, we
partition the semantic vectors into overlapping partitions
based on the vector magnitudes. The intuition behind this
step is that connected components of significantly different
size are unlikely to be clones.

However, it is often in the nature of security research to begin an
arms race and now that this optimization is known, it presents a
vulnerability in the AnDarwin methodology. Android spammers
and plagiarists may attempt to take advantage of the lack of edge
information in semantic vectors by inflating the sizes of PDG
components, and maybe even combining connected components
through bogus data dependencies.

Therefore, we seek to improve the PDG-to-vector conversion
process in a way that incorporates more structural information from
the original graph. Furthermore, we wish to find solutions that:

* do not introduce any new false negatives
* are somewhat resistant to simple obfuscation techniques

* do not significantly inflate the runtime of AnDarwin.

In the sections that follow, we propose and evaluate several ways of
incorporating characteristic graph edge information into semantic
vectors.

3. Simple degree counts

When considering a method to condense the edge information of a
graph into a vector, one may be tempted to express the entire graph
as a vector in the form of an adjacency matrix or an adjacency list.
However, since connected components may have different sizes, this
will create vectors of different dimensions that cannot be compared

2012/12/14

Instr #9
Type #11

Instr #10
Type #0

PARAM_CALLEE

Instr #15
Type #9
Instr #17 | [Instr #47
Type #0 | | Type #13
Instr #18
Type #7

Instr #19
Type #7

Instr #28
Type #11

Instr #35
Type #9

e
Instr #42 || Instr #37
Type #0 | | Type #11

Instr #43
Type #0

Instr #29
T

(a) PDG 1

Instr #8
Type #11
Instr #10
Type #9
Instr #12

Type #11

Instr #13
Type #0

Instr #24]

Type #6 Type #11

Instr #35
Type #0
Instr #36
Type #7
Instr #37
Type #11

/V

</ [warsad
Ty

Instr #3
Type #17

Instr #5
Type #0

(b) PDG 2

Figure 1. Non-isomorphic connected components that share the same vector under the current construction

easily. Furthermore, for dense graphs || € O(|V|?), which means
the dimension of the vectors to be clustered will potentially jump
as the square of number of nodes. Finally, we know that the LHS
algorithm has running time !

O(d Y |gl”loglgl),

geG

and vector dimension d is currently kept constant by categorizing
statement types. If the entire graph is encoded as a vector, the vector
dimension will no longer be a constant. Therefore, encoding the
entire graph as a vector is undesirable.

Meanwhile, a simple and promising to condense characteristic
structural information of graph into a vector is to count the degrees
of nodes of each statement type and record them in the vector. This
can be done through aggregation or computing the maximum or the
average degree for each node type. Also, since PDG’s are directed
graphs, the number of edges coming info a node, or its in-degree,
can be recorded separately from its out-degree. Figure 1 shows a
false positive — two PDG’s that are structurally different but have
the same vector under the current construction in AnDarwin. It is
easy to see that, even though the two graphs have the same number
of nodes of Type 9, these nodes have very different degree corounts.

Since the set of nodes of a certain type and their edges induce a
subgraph on the PDG, there are several different ways to characterize
the d subgraphs using degree counts. Yet, regardless of which
method is chosen, we can show that any method already has two
out of the three desired properties — it will not generate any new
false negatives and will not considerably inflate the runtime of the
LHS algorithm. The first property is easy to see: if two graphs are
isomorphic, then they have identical structure. Therefore, all of their
nodes will have the same degree.

LG is the set of vector partitions, |g]| is the size of the vector partition and
0<p<l1

The second property comes from the fact that the measure of
degree is computed for each of d node types, so even if ¢ different
degree counts are recorded in the vector, this will only increase the
vector dimension, and therefore the runtime of LSH, by a constant
factor of c. Finally, these degree measures can be computed in time
O(]V|+|E]|) in the size of the PDG, which increases the complexity
of vector creation somewhat compared to the previous construction,
which did not look at edge data at all.

Therefore, these methods will only provide different benefits
regarding resistance to obfuscation. These are evaluated below.

3.1 Total degree

In the spirit of the original vector construction used by AnDarwin,
we can modify vectors to record the sum of the degrees of all the
nodes of each type. That is, if V; is the subset of nodes of type ¢ in a
program dependence graph G, then set

Vdti = Z deg(u).

u€eV;

However, this construction increases the sensitivity of vectors to
small changes in graphs. For example, consider the graph G and
construct a graph G’ by adding a path u1, . . . ux of nodes of some
type to some node u € G. This change might correspond to a string
of bogus a linear chain of bogus variables that depend on each other,
and is a simple obfuscation that can be made by an attacker. Under
the old construction, v, constructed from G’ would be k greater
than v;. Meanwhile, under the new construction, the v; would also
increase by k, but v, ; would increase by 2k, thereby increasing the
distance between v and v’ even more than under the old construction,
even though the graphs were structurally similar except for that one
simple obfuscation. Therefore, this method is not recommended due
to its sensitivity to small changes.

2012/12/14

3.2 Max degree

A less precise but also less sensitive measure is the maximum degree
of a node type.

Vdti = umea‘;f deg(u).

For example, we can see in Figure 1(a) that the two central nodes of
Type 9 have out-degree 5 and 6, while the central node of Type 9 in
1(b) has out-degree 12. In a way, max degree records the relevance of
the nodes that are most important, thereby providing useful structural
characterization, but not in a way that is too sensitive to obfuscation.
Under this construction, the change described in the previous section
will affect the original component v; in the same way, but vg,; will
increase by at most 1, if at all. This approach will also bridge some
distance between structurally similar graphs with different node
counts.

3.3 Max in-degree vs. max out-degree

Since PDG’s are directed, it may help to separate the in-degree count
from the out-degree to provide even more structural information.
Furthermore, it may even be more useful to record one or the other in
the vector, as they have different meanings in the PDG and therefore
respond differently to obfuscation attempts. More specifically, the in-
degree of a statement s measures how many statements the value of
s depend on, which is difficult to modify because when something
s depends on something, it is difficult to force it to depend on
something else. However, it is easy to create additional meaningless
statements with high in-degree that do not mean anything but depend
on a lot of things. Meanwhile, the out-degree of a statement s
measures its importance to the rest of the program, so it may be easy
to create bogus statements and make them also depend on s to drive
up its out-degree. However, the creation of a new statement s’ that
has higher out-degree than s is fairly difficult without creating many
additional statements, since it is difficult to force existing values to
depend on s’.

Therefore, this presents a trade-off. When an attacker tries to
increase v; when it is computed as the maximum in-degree, the
attacker will likely opt to create a bogus variable and have it depend
on all the values in the program. Meanwhile, if v; is the maximum
out-degree of a statement of type ¢, then an attacker will have trouble
beating v; by creating a new statement of high out-degree, so he
will attempt to add bogus statements that depend on the statement
su of type ¢ with max out-degree. However, we argue that since
sy 1is already the most important statement in the program, the
attacker will be more reluctant to add extra bogus statements and
create complexity to an already important statement than he would
in the case of obfuscating for in-degree. Therefore, we believe that
the out-degree measure is somewhat more obfuscation-resistant.

3.4 Combined approach

However, it is possible to combine the trade-offs in the two ap-
proaches above. We claimed that existing in-degree is difficult to
modify and existing max out-degree is difficult to beat with a new
statement. Therefore, we propose the following construction:

Va4 = deg;,, (arg max deg,,,; (u:)).

The rationale for this is as follows: the statement of type ¢ with the
max out-degree can be considered the most important statement of
this type. We argued that if an attacker was to modify the program,
he would increase the max out-degree of this statement rather than
add a new statement of higher out-degree. Similarly, we argued
that the in-degree of an existing statement is difficult to change.
Therefore, we suggest identifying the most important statement in
the program and then recording its in-degree.

3.5 Average in- or out-degree

Finally, it is possible that many of these vector modifications will
create many new false positives. This is because no characterization
of the set of PDG’s is currently available, so it is very likely that
these graphs are not randomly distributed. Indeed, these graphs are
creates from similar programs, so it is likely that they are structurally
similar in ways we did not anticipate and thus some of these degree
measures result in very close vectors for programs that are otherwise
very different. For example, it might turn out that the max out-degree
of all addition statements is always 2 because of the way addition is
used in programs. We do not know that this is not the case. Therefore,
in this situation, we suggest adding the measure of average in-degree
or out-degree to further distinguish programs that may inadvertently
turn out to be similar under this method.

Additionally, most simple obfuscations would likely not involve
building many connections to the existing program (since they do
not want to accidentally break it.) Therefore, it is likely that most
obfuscation would build weakly connected chains of bogus nodes —
which may drive up max degree measures but would not significantly
drive up the average.

3.6 Conclusion

As an initial modification to AnDarwin, it appears that the following
construction would be the simplest and most promising

Vd+i = Max degout (u)v
u€eV;

since it captures the importance of a program statement rather than
its data dependencies. However, since no concise characterization
of the data set exists, it is possible that all Android programs are
rather structurally similar or contain many similar methods, and
therefore it is impossible to say whether this approach will generate
a lot of new false positives. If this is the case, then it may be helpful
to combine max out-degree with other degree measures of the graph
such as average out-degree to better characterize structure.

While we argued that the combined approach is most resistant to
obfuscation, it is likely that it is unnecessary at this time as not many
developers will be trying to obfuscate that aggressively. Meanwhile,
this technique is more likely to generate more new false positives,
since it’s fairly likely that certain important statements will have
similar in-degree. For example, most conditional branches may have
in-degree two or three because they do not involve many variables.
Therefore, this construction is only recommended in conjunction
with the technique shown above and will likely only perform well
after attackers get creative.

4. Future work

The first step in future work would obviously be the implementation
and testing of these techniques. However, it is not entirely sufficient
to see how well they do in practice; it is also desirable to obtain some
information about when they are performing well, when they fail and
which obfuscations are effective at confusing them. Therefore, we
believe that this project would benefit from investing in an automated
way to characterize false positives. This would likely be done by
identifying the positives, verifying them with a graph isomorphism
solver and then summarizing where the algorithm went wrong. This
data could then be used to evaluate and advance vector construction
methods to further refine the AnDarwin tool.

Another useful modification to the AnDarwin approach may be
to distort Euclidean space to account for some inequalities in the
axes. For example, suppose type 7 is binary operations and type j is
conditional statements. It may be easier for an attacker to add extra
binary operations to a program than to add conditional statement.
Or, it could be that the range of average degree counts is much
smaller than the range of the max degree counts. Therefore, it may

2012/12/14

help to lengthen that axis where on which points naturally cluster
close together or compress the axes on which points naturally lie
far apart. However, since there is no ground truth, this is difficult to
accomplish correctly but it may be possible with a representative
random sample of the data and some statistical analysis.

References

[1] Jonathan Crussell, Clint Gibler, and Hao Chen.
Attack of the Clones: Detecting Cloned Applications on Android Markets.
To appear in 17th European Symposium on Research in Computer
Security (ESORICS), Pisa, Italy, September 10-12, 2012. (20%)

2012/12/14

